THE PROPANE-PENTANE SYSTEM AT HIGH PRESSURES*

J.Vejrosta and I.Wichterle
Institute of Chemical Process Fundamentals, Czechoslovak Academy of Sciences, 16502 Prague - Suchdol

Received August 28th, 1973

Vapour-liquid equilibrium data were measured in the propane-pentane system on seven isotherms within the temperature range from 63.41 to $110.00^{\circ} \mathrm{C}$ and at pressures up to critical using a static semimicrostill.

The separation processes are now carried out at conditions remarcably differing from those considered until recently as normal. Still increasing interest in high

Table I
Liquid-Vapour Equilibrium in the Propane(1)-Pentane(2) System

$63.41^{\circ} \mathrm{C}$			$71 \cdot 11^{\circ} \mathrm{C}$			$87.77^{\circ} \mathrm{C}$			$92.55^{\circ} \mathrm{C}$		
x_{1}	y_{1}	P, atm									
0.055	0.299	$3 \cdot 30$	0.054	$0 \cdot 281$	3.95	0.051	0.230	$5 \cdot 74$	0.050	0.208	$6 \cdot 34$
0.142	0.526	$4 \cdot 88$	0.140	0.508	5.73	0.138	0.455	7.94	0.135	0.435	$8 \cdot 66$
0.186	0.590	$5 \cdot 66$	0.263	0.682	8.32	0.258	$0 \cdot 640$	11.18	0.261	0.614	$12 \cdot 17$
0.270	0.696	$7 \cdot 16$	$0 \cdot 306$	0.709	9.03	0.292	0.669	$12 \cdot 10$	0.352	0.697	14.80
0.303	0.724	7.83	0.367	0.767	$10 \cdot 30$	0.346	0.722	$13 \cdot 60$	0.392	0.732	15.95
0.358	0.765	$8 \cdot 82$	0.506	0.842	13.42	0.390	0.752	14.77	0.488	0.790	18.76
0.396	0.792	9.54	0.549	0.861	14.25	0.536	0.831	18.97	0.667	0.872	24.90
0.546	0.864	12.40	0.676	0.905	17.31	0.689	0.896	23.54	0.777	0.916	29.07
0.695	0.919	15.32	0.684	0.911	17.68	0.788	0.924	26.96	0.840	0.938	31.54
0.788	0.946	17.44	0.854	0.957	21.84	0.846	0.946	29.29	0.904	0.957	$34 \cdot 19$
0.849	0.962	18.85	0.886	0.968	22.99	0.886	0.957	$30 \cdot 76$	0.924	0.965	35.02
0.890	0.972	19.92	0.928	0.980	23.97	0.918	0.970	32.35	0.961	0.982	36.96
0.924	0.982	$20 \cdot 67$	0.964	0.990	25.26	0.962	0.985	34.09	0.981	0.991	37-83
0.963	$0 \cdot 991$	21.65	$0 \cdot 982$	0.995	$25 \cdot 66$	0.981	0.993	34.82	-	-	-
0.982	0.996	22.06	-	-	-	-	-	-	-	-	-

[^0]pressure vapour--liquid equilibrium data is more than obvious especially with regard to petrochemical industry. This was one of the reasons why the propane-pentane system was chosen. Another one was that this system was originally used for testing a static semimicrostill described in previous paper ${ }^{1}$ and also for sufficient data available in literature for comparison.

EXPERIMENTAL

Material used. Propane was research grade gas supplied by Fluka A. G. (Switzerland) with certified purity better than 99.9%, (density $d_{4}^{20} 0.5005$). Pentane was research grade supplied by Fluka A. G. with certified $99.98 \%\left(d_{4}^{2 a} 0.6262, n_{\mathrm{D}}^{20} 1.3588\right)$. Both chemicals were used without further purification.

Apparatus and procedure. The static semimicrostill used in this work was checked and described in previous paper ${ }^{1}$. At first the individual components were degasified in adjacent glas equipment and after that condensed in the equilibrium cell occasionally cooled by means of liquid nitrogen. The temperature of the system was maintained and measured with accuracy $\pm 0.01^{\circ} \mathrm{C}$ using calibrated platinum resistance thermometer (Heraeus). The pressure was measured by means of precise Heise pressure gauge having an accuracy 0.1% of the full scale value. When the equilibrium

Table I
(continued)

$94.52^{\circ} \mathrm{C}$			$100 \cdot 00^{\circ} \mathrm{C}$			$110.00^{\circ} \mathrm{C}$		
x_{1}	y_{i}	P, atm	x_{1}	y_{1}	$P, \mathrm{~atm}$	x_{1}	y_{1}	P, atm
0.047	0.202	6.59	0.251	0.576	13.66	0.251	0.552	16.00
0.133	0.431	8.95	0.350	0.678	16.60	0.343	0.644	19.36
0.396	0.724	16.46	0.465	0.762	20.80	0.466	0.736	$24 \cdot 10$
0.478	0.781	19.21	0.664	0.857	27.78	$0 \cdot 658$	0.833	$32 \cdot 24$
0.665	0.868	$25 \cdot 66$	0.794	0.911	33.08	0.792	$0 \cdot 881$	38.32
0.800	0.918	$30 \cdot 45$	0.858	0.928	$36 \cdot 24$	-	-	-
0.843	0.934	32.53	0.902	0.945	38.58	-	-	-
0.857	0.939	$33 \cdot 26$	0.932	0.960	$40 \cdot 23$	-	-	-
0.903	0.955	$35 \cdot 29$	-	-	-	-	-	-
0.923	0.964	$36 \cdot 15$	-	-	-	-	-	-
0.938	0.970	$37 \cdot 17$	-	-	-	-	-	-

was attained the samples were withdrawn for gas chromatographic analysis. The chromatographic column was 1.5 m long filled with 20% hexadecane on Chezasorb and operated at $60^{\circ} \mathrm{C}$. Indication was realized using thermal conductivity detector. The chromatographic analyses were believed to be determined with accuracy of 1%.

RESULTS

The isothermal measurements were carried out for temperatures $63 \cdot 41,71 \cdot 11,87 \cdot 77$, $92 \cdot 55,94 \cdot 52,100 \cdot 00$, and $110 \cdot 00^{\circ} \mathrm{C}$. The experimental liquid (x) and vapour (y) compositions given in mole fractions together with equilibrium pressures (atm) are presented in the Table I.

REFERENCES

1. Vejrosta J., Wichterle I., Wicar S.: This Journal 39, 206 (1974). Translated by K. Hlavatý,

[^0]: * Part LXV in the series Liquid-Vapour Equilibrium; Part LXIV: This Journal 39, 695 (1974).

